Network Class Superposition Analyses

نویسندگان

  • Carl A. B. Pearson
  • Chen Zeng
  • Rahul Simha
چکیده

Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30) for the yeast cell cycle process), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achievable rates for relay networks using superposition coding

We investigate the superposition strategy and its usefulness in terms of achievable information theoretic rates. The achievable rate of the superposition of block Markov encoding (decode-forward) and side information encoding (compress-forward) for the three-node Gaussian relay channel is analyzed. It is generally believed that the superposition can out perform decode-forward or compress-forwar...

متن کامل

Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality

We show that strict superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences.

متن کامل

Superposition and Decision Procedures Back and Forth

Two apparently different approaches to automating deduction are mentioned in the title; they are the subject of a debate on “big engines vs. little engines of proof”. The contributions in this thesis advocate that these two strands of research can interplay in subtle and sometimes unexpected ways, such that mutual pervasion can lead to intriguing results: Firstly, superposition can be run on to...

متن کامل

A heuristic method for consumable resource allocation in multi-class dynamic PERT networks

This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a n...

متن کامل

A non-linear training set superposition filter derived by neural network training methods for implementation in a shift invariant optical correlator

The various types of synthetic discriminant function (sdf) filter result in a weighted linear superposition of the training set images. Neural network training procedures result in a non-linear superposition of the training set images or, effectively, a feature extraction process, which leads to better interpolation properties than achievable with the sdf filter. However, generally, shift invar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013